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Abstract.

In this paper, the propagation of interfacial waves near the critical depth level in a
two-layered fluid system is investigated. We first derive an evolution equation for ~Weak1y
nonlinear and dispersive interfacial waves propagating predominantly in the longitudinal
direction of a slowly rotating channel with gradually varying topography and sidewalls.
The new evolution equation includes both quadratic and cubic nonlinearities. For
interfacial waves propagating in certain type of non-rotating channels with varying
topography, we find two families of periodic solutions, expressed in terms of the snoidal
function, to the variable-coefficient equation. As the limiting cases of these periodic-wave
solutions, a family of solitary-wave solutions and an isolated shock-like wave solution
are also obtained. In a uniform rotating channel, our small-time asymptotic analysis
and numerical study show that depending on the relative importance of the cubic
nonlinearity to quadratic nonlinearity, the wavefront of a Kelvin solitary wave will
curve either forwards or backwards, trailed by a small train of Poincaré waves. When
these two nonlinearities almost balance each other, the wavefront becomes almost  /

straight-crested across the channel, and the trailing Poincaré waves diminish.



1. Introduction

Nonlinear and dispersive internal wave trains have been observed and measured
in marine straits (e.g. Gargett 1976; Alpers & Salusti 1983; La Violette & Arnone
1988) and in long, narrow thermally stratified lakes (e.g. Thorpe, Hall & Crofts 1972;
Hunkins & Fliegel 1973; Farmer 1978). Many attempts have been made to extend
the applicability of the original Kadomtsev-Petviashvili (KP) equation (Kadomtsev &
Petviashvili 1970) to accommodate important factors affecting these observed internal
wave propagations, such as rotation, variations of topography and sidewalls, and a
background current field. Most recently, Chen & Liu (1995) presented the derivation
of the unified KP (uKP) equation for weakly nonlinear and dispersive interfacial waves
of two-layer fluids propagating predominantly in the longitudinal direction of a slowly
rotating channel with gradually varying topography and sidewalls, and a weak steady
background current field. Their result was a generalization of all previous work within
the context of surface and interfacial waves.

The uKP equation was derived under the assumption that the effects of nonlinearity,’/
dispersion, rotation, transverse modulation and variations of topography and sidewalls
are weak but equally important. In the equation, the nonlinear term is quadratic and
its coefficient is proportional to D_; = p~/(h™)? — p*/(k+)?, where p* and AT are
the dimensionless densities and leading-order depths in the upper and lower layers,
respectively. This implicitly limits the range of the variation of topography because D_,
must remain same sign and be an order one quantity to ensure that the nonlinearity
indeed is as important as the dispersion and other effects. If the bottom changes
to certain extent that D_, changes sign, the uKP equation is no longer applicable
because near the critical depth level defined as ht/h~ = (p*/p~)/*(i.e. D_ = 0), the
coefficient of the nonlinear term is so small that the balance betweeh the nonlinearity
and dispersion (and other effects) becomes impossible under the Boussinesq assumption,

i.e. O(ao/ho) = O(h2/12) < 1, where ag, ho and lo are the typical wave amplitude, depth




and wavelength, respectively.

In the study of the change of polarity of two-dimensional solitary waves as they
pass through the critical depth level, Helfrich, Melville & Miles (1984) showed ;ch:at near
the critical depth level, nonlinearity and dispersion can be of the same order magnitude
in the parametric regime where O(ag/ho) = O(ho/lp) < 1. In this situation, the cubic
nonlinearity becomes comparable to or dominates the quadratic nonlinearity and must
be taken into account.

The inclusion of the cubic nonlinearity can have a significant influence on wave
motion. For transcritical two-layer flow over a two-dimensional topography or past a
constriction in a stationary channel, Melville and his associates found that the inclusion
of the cubic nonlinearity changes the character of the upstream disturbance, giving an
upstream advancing monotonic non-dissipative bore, rather than a trains of Boussinesq
solitary waves (Melville & Helfrich 1987; Tomasson & Melville 1991).

Although recently there have been several studies on Kelvin solitary wave
propagation in a rotating channel (Katsis & Akylas 1987; Melville, Tomasson &
Renouard 1989; Grimshaw & Tang 1990; Chen & Liu 1996b), Kelvin solitary wave
propagation near the critical depth level has not been studied yet. We expect that
the inclusion of the cubic nonlinearity may give rise to some new wave propagation
phenomena, especially when the Kelvin solitary wave propagates over a varying
topography such that the coeflicient of the quadratic nonlinear term changes its sign.

In this paper, we consider the formulation and analytical solutions of the evolution
equation that governing three-dimensional interfacial wave propagation near the critical
depth level in the most possible general setting. Then, we apply the equation to study
Kelvin solitary wave propagation near the critical depth level in a rotating uniform
channel to reveal new wave phenomena caused by the cubic nonlinearity.

In the next section, assuming that the effects of nonlinearity, dispersion, rotation,

transverse modulation and variations of topography and sidewalls are weak but




equally important, we derive an interfacial displacement evolution equation for waves
propagating near the critical depth level. In section 3, we study the integrability of
the evolution equation and seek analytical solutions to describe wave propaga_tic;ns in
certain type of curved channels with varying topography. In section 4, we carry out
the small-time asymptotic analysis and numerical study of the evolution equation for
Kelvin solitary wave propagation in a rotating uniform channel to examine the physical

features brought by the cubic nonlinearity. Concluding remarks are given in section 5.

2. Derivation of the evolution equation

We consider interfacial waves propagating along the interface of two fluid layers
confined in a rotating wide channel with varying topography and sidewalls. Cartesian
coordinates are employed with the Z- and §-axis in the longitudinal and transverse
directions of the channel, respectively, and the Z-axis pointing vertically upwards. The
interface is denoted by % = (%, §,7) with 7 = 0 being the undisturbed interface. The
rotation rate about the vertical axis is f/2. The densities of the upper and lower layers}
are p+ and g~ (p~ > pt), respectively (hereafter superscripts + and — are used to
identify quantities in the upper and lower layers, respectively). The upper and lower
Jayers are bounded by 7 = H+ (the rigid-lid assumption is adopted to approximate the
free surface) and # = H~(%, %), respectively. The vertical sidewalls are represented by
§ = §1(3) and § = §.(8) with §i > G-

The fluids in both layers are assumed to be inviscid and incompressible. The
dimensionless governing equations and boundary conditions for flows in the upper and

lower layers are
out vt  Guwt

5z T dy ' 6z 0 (2.12)
ou* LO0uE LouE | Out . Op*
"'a't_‘i"fi(u —a—;-i"v Fy__*_w —a— — YU ——a—x, (Z.Ib)




v 8vi +Ov* L ap*
hl el htal = 9
8t+6( 5z 3y+ 5 )“ dy (21¢)
+ + +
dw ial - _QP__ (9
[ ( 83/ +w Ep )} = — (2.1d)
+_On +0n 40 o X
=5 ( 3 +v 5y> on z=en, (2.1e)
pfpt—pp 4+0n=0 on z=ey, (2.1f)
wt=0 on z=H?, (2.1g)
wT = —u” agi_ — v~ 85;— on z=-—H (z,y), (2.1h)
ot o y=y(e)u) (2.11)

where superscripts + are vertically ordered; u*, v* and w* are the dimensionless velocity
components in the z-, y- and z-direction, respectively, and p* is the dimensionless
hydrodynamic pressure. The dimensionless variables are related to their dimensional
counterparts (denoted by tildes) by:

- . )
(5:> g) = lo(may)a Z=hez, t= it? H* = hOH:h> Ur = loy-,

Co
371 = loyl, ﬁ = ao7], (ﬂivﬁi) = a_;)ic_o(ui7vi)7 ,w:i: = i})—c—qwia (22>
0 ¢}

. L - ao
5 =pop*, g =(p" —p)ghe, P = Ecc%popip*,

where [y and hg are the characteristic wavelength and depth, respectively; ag and ¢y are
the characteristic amplitude and phase speed of linear long waves, respectively; g is the
gravitational acceleration and po is the characteristic density. The parameters €, u? and

v appearing in (2.1) are defined as

e=aolho,  p’=(ho/lo)’, v =1lf/co, (2.3)

which measure nonlinearity, dispersion and rotation, respectively.
We shall derive the evolution equation for weakly nonlinear and dispersive interfacial

waves propagating near the critical depth level and travelling predominantly in the




longitudinal direction of a slowly rotating channel with gradually varying topography

and sidewalls. More specifically, we assume that

D_y=p /()Y =pt /() =0(c), e=oau, ~=Pu, withy<l, (2.4)

where o and § are two order one constants, and the bottom and the sidewalls can be
expressed as

H™ = h™(pPz) + 1 B(u2z, py), (2.5a)
1 1
yr = ;YR(uzxL Yy = ;YL(ﬂzx)- (2.5b)

We use p as the basic perturbation parameter in the following derivation.
To derive a single evolution equation for the interfacial displacement, we introduce

the following transformation:
E= /r C~ ' (uz)dx — ¢, X = py’z, Y = py, Z =z, (2.6a)
0

where C is given by
1/2

C(X)= (p*/h* +p7/h7) ", (2.6bY
and h* = H* = constant is used for convenience. Note that C is the leading order of
the local linear-long-wave speed and £ = O(1) is the characteristic coordinate moving at
the speed of C to the right.

In the moving coordinates (¢, X, Y, Z), governing equations and boundary conditions

(2.1) can be rewritten as

1 Ou* N 3u*+ vt Ow*
C ot Wox Ty Tz T

Ju* L[ 10 L0u L Oou* i@u* "
% O‘“{“ (c ag T ax)“‘ By
1 9pt op* -
-C—-ap;f-*-/iza{;., (2.7b)
dv* 10 , v ov* Ov* ap* _
B e (G5 5 ) G ety o B e




dw* 1 dw* dw* Juw* Juw?* op*
20— _ =3 2 + + _ 9P 9.7
“{ag “’“[“ (c e T ax)“‘” oy TV az” ARG
an 1 dn dn Jn .
x__9n (29T 2 + _ o=
w i + au [u (C 7t + 4 E¥e + po vl Z = en, (2.7¢)
ptpT —p"p +n=0 on Z=en, (2.71)
wt=0 on Z=h", (2.7g)
dh~ 0B 0B
- 20 2 3, - = h 2 97
w wu (dX —i—uaX) pUT o on Z VT — uB, (2.7h)
+ id)/ e ' :
vt = o on Y = Yr(X), Yo(X), (2.71)

where (2.5a) and (2.5b) have been used.
A solution to the governing equations and boundary conditions (2.7) is sought in

the following series forms:

G = Go(f,X, }/7 Z) + /'LGl(g’XaY'v Z) + ﬂ2G2(§a XaK Z) + O(#B)v (28&)
v¥ = (€, XY, Z) + p*vi (€, XY, Z) + O(u®), (2.8b),
n=n0(&, X, Y) +pm (6, X,Y) + 1Pna2(6, X, Y) + O(1®), (2.8¢)

where G = {u® w®,p*}. Substituting (2.8) into (2.7) and expanding the interfacial
boundary conditions (2.7¢) and (2.7f) at Z = 0 and the bottom boundary condition
(2.7h) at Z = —h~, we obtain a sequence of initial-boundary-value problems by
collecting coefficients of ™. Carrying out the perturbation analysis to the second order
(n = 2), we find out that the compatibility condition of the second-order problem
requires 7o and 7; to satisfy the following evolution equation (for details, see Chen

1995):

a e\  3aC? 0} 9’13 Dy 0%no
/2. 9 | ~17290 0 2/2 0o,
% (C ag>+ o D2 @0 DGa 5 5a
C_2§_2_719 _ gi p~BC*9%, 3alC? D 0*nom
2 Y2 2 PT oy 582 T2 Tt o

+ =0, (2.9)




where Dy, D_, and D_3 are defined as
Dn(X)=p (A7) + (=1)*pT(r*)* (n=1,-2,-3). - (2.10)

Because D_, = p~/(h™)? — p*/(hT)? = O(e), the last term involving n; in (2.9) can
be dropped and we obtain the evolution equation, including both quadratic and cubic

nonlinearity, for interfacial waves propagating near the critical depth level:

d Ao 3¢ O*nt & &*n3 Dy 0*ne
12 9 [ ~172970 € o o € 2 o , Y1
“Tox (C 85) t e Po%e a0 P%m Y
2 92 2 -~ 292
C*%no v 4 pP~BCT0%m _ 0. (2.11)

T ey T 52™ T oy B

The leading order of the impermeable boundary conditions along the sidewalls,
(2.71), provides the sidewall boundary conditions for 7:

Ino 7 1 dY Ono

oy tac™ = cax e oY = YR(O.M() (2.12)
Note that if O(e) = O(u?) and D_; = O(1), the cubic nonlinear term in (2.11)

becomes higher-order and can be neglected; the resulting equation recovers the uKP

equation derived by Chen & Liu (1995) through the following changes:

' 2
(X,Y,B) = (’-“G—X £y, f—B) . (2.13)

2 2

The boundary conditions on the sidewalls for the uKP equation are also recovered
from (2.12) through the same changes. Besides the cubic nonlinear term, the physical
meaning of each of the remaining terms in-(2.11) is the same as that of the corresponding
term in the uKP equation (Chen & Liu 1995). -

In the absence of rotation, (2.11) can be further reduced to the existing evolution
equations for interfacial wave propagation near the critical depth level. For example, if

the bottom is flat, (2.11) becomes:

9*no 3e &?n2 & " Dy 0%y C 0% :
2 op,Lh _Cop 2 DL £ _ .
5x0 * 70 50 — O teoger T 5 gy = O (2.14)




10

which agrees with the modified KP equation given by Tsuji & Oikawa (1993),
who numerically solved the equation to study the interaction of two solitary waves
propagating in close directions. On the other hand, if the wave field is independe;nt of Y

(the sidewalls should be straight and parallel), (2.11) reduces to

9] 3e 8772 €? 8773 D, 83770 p‘302 8770
/2 Y 1/2 i 0 _ - 2 20 4 7
C y X (C 770) 4 20 D...Q aé_ 20 D__3 aé 6 553 2(! _)2 3§ 0. (215)

When B = 0, (2.15) is equivalent to the evolution equation derived by Helfrich et al.
(1984). When A~ is constant, (2.15) is identical to the evolution equation derived by
Chen & Liu (1996a) to study the effect of a random topography on two-dimensional
interfacial wave propagation.

Assuming that the solution of (2.11) with boundary conditions (2.12), g, is locally

confined, we find out that

1/2 Y, 400 ,
T =(C/W) /Y / nod€dY, W(X) = Yz(X) — Ya(X) (2.16)
R J—00
is the first-order invariant when the rotation is absent (i.e. v = 0) and F;
j—C/YL/+°° 24¢dy 2.17
=Y v Jeoe Mo (2.17)

is the second-order invariant regardless whether the rotation is present. The locally

confined solution also has to satisfy the same constraint imposed on the uKP equation
(Chen & Liu 1995):

[ nede = F(X) exp(~5Y/0) (2.18)
Thus, again, the minimal requirement fo‘r a solution of (2.11) with (2.12) to be locally

confined is that its initial condition satisfies (2.18) (with 8 = v/u) at X = 0.

3. Analytic solutions

Equation (2.11) is a nonlinear evolution equation with variable coefficients. In

general, no procedure is available to obtain analytic solutions of the corresponding
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Cauchy problem, let alone initial-boundary-value problems. In this section, we focus on
initial-value problems first.

A powerful tool to investigate the complete integrability of a nonlinear evolution
equation is the Painlevé PDE test (Ablowitz &Clarkson 1991). It provides a useful
criterion for whether a given partial differential equation is completely integrable. We
now carry out the Painlevé analysis to find out under what conditions (2.11) passes the
test, as we did for the uKP equation in Chen & Liu (1995).

To simplify the algebraic manipulation, we introduce the following transformation:

1/2 -
=~ (D _ "D
770 - CC (3D._3> C? T _/0 6CdX7 (3'1)

which transforms (2.11) into

824 82C2 82 CS 84C 82C 32C ag B

5r9¢ + 6(7')@ — 2—8_52— + —8?{ + CL(T)W + b(7, Y)gé'.; + C(T)é-g —d(m)( =0, (3.2)
where
o2 _ 3p~BC?
a=3C*/Dy, b= D)7 (3.3&?}
_ 3p~C [(h7)* 3 C%*(h™)?] dh~
‘T D) [ D, DL 2z |dx’ (3.3b)
3y 30D, 3 \V
‘=D T (DID_g) ‘ (3-3¢)
We seek solutions of (3.2) in the form
C(T, £, Y) = S‘opzuj(Tv Y)(foja go(T,f,Y) =¢+ ¢(T’ Y)7 (34)
3=0 .

where p is an integer, and ¥(7,Y) and u;(7,Y)(7 = 0,1,2,...) are analytic functions of 7
and Y in the neighborhood of a non-characteristic movable singularity manifold defined
by ¢ = 0. Upon substitution of (3.4) into (3.2), the leading-order analysis requires that

p = —1 and v = 1. Equating the like powers of ¢ yields the general recursion relation:

G+1)G -3 —4)u; +W; =0, (3.52)
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where
aQu_ ) -1 k j—-1
Wi = a2 —dujs =205 = 3)(5 = 4) | 20 D UnUjmkUiom + %0 Y Un¥jm
OY k=1 m=0 m=1
. I . . N )\’
+e(f = 3)(F —4) D urrjor-x + (5 — 3)(j — 4ujs [; +a (a—;é) + b}
k=0 !
) o? Ou;_ OY Ou;_
+ (7 —4) [Uj._;; (c+ aayd;) + ZJT 24 aa—;ﬁaggf} (3.5b)

for 7 > 1 (define u; =0 for 7 < 0).

Since 7 = 4 is a double root of the indicial polynomial determining the resonances
(occurring at some j where u; is arbitrary), (3.2) cannot pass the Painlevé test. Note
that the appearance of the double root is due to the existence of the cubic nonlinear
term in (3.2); even for the simplest case when the rotation is absent and the bottom is
flat, the equation still cannot pass the Painlevé test. Since there is no way to let (3.2)
pass the Painlevé test by imposing restrictions on the variable coefficients a, b, ¢, d and
e (if there were, the evolufion equation could be reduced to a completely integrable
equation in canonical form via an elementary transformation), the search for analytical /
solutions of (3.2) or (2.11) becomes very challenging. In what follows, we shall give some
analytical solutions to (2.11) for certain type of varying topography and sidewalls in the
absence of rotation.

Under the assumption that

B =0, h~ = const, = Fi(X)Y + Fo(X), (3.6)

where Fy and Fj are arbitrary functions c;f X, (2.11) becomes:

g 3a 0%nk ) *n Dy 0'np
oxoe T 9P2%e ~ DG T 50 G
C 8o , %o
+ 3 5y2 + [Fi(X)Y + Fo(X)] o8 =0, (3.7)

which is still a nonlinear evolution equation with variable coefficients. Assumption (3.6)

implies that there is no rotation and the variation of topography is weak and behaves
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like a linear function in the transverse direction. Note that this assumption actually is
the complete integrability conditions for the uKP equation (Chen & Liu 1995).

We find that the following transformation:

DI/D-—-3 Ca (38&)
T =+6D,X/C, (3.8b)
- X X C q ‘ 2
~vB{c-v [" Rle- | R+ 5 ([ Aee) [a}. s
_ X rq
¥ = 6,/Dy [Y/C + /0 /O Fl(s)dsdq} , (3.84)
transforms equation (3.7) and boundary conditions (2.12) with v = 0 (i.e. 8 = 0) into
9 (& ¢ C 8% ¢ .
9% (aT Tex TN ax taxs) Tl =0 (3.9)
with
CD_,
== 3.10
4p(D1D_5)'/* ( )
and :
¢ 12 dYR a¢ o
5= (6D)77 |5 E 4 C/ Fi(gMg| 53 on ¥ =Ya(T), (3.11a)
d ay; 8 o
af/ (6Dy1)" 1/2[ Lic / Fi() dq] 8§( on V=TT, (3.11b)

respectively, where

Ya(T) = 6Dy [YR/C+ / /Fl dsdq] (3.12a)
7(T) = 6/D: [YL/C+ / /Fl dsdq] (3.12b)

As shown in (3.10), the parameter r signifies the relative importance of the quadratic and

cubic nonlinearities. Note that with a rescaling, (3.8) is equivalent to the transformation

used to transform the uKP equation (under assumption (3.6)) into the KP equation in

canonical form (Chen & Liu 1995).
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Equation (3.9) is a constant-coefficient modified KP equation. Although the KP
equation and the modified KdV equation are both completely integrable, the modified
KP equation (3.9) is not (note that (3.9) is a special case of (3.2)). Nevertheless,
since (3.9) is a constant-coefficient wave equation, it may admit travelling-wave
solutions. We now seek for all bounded travelling-wave solutions of (3.9). Substituting
{(¢) = (X +1Y — wT) (I and w are constants) into (3.9) and integrating the resulting

equation twice, we obtain
"= —3r(®+ (w—30°)(+ Aé+ B, (3.13)

where ' = d/d¢, A and B are two constants of integration. For bounded solutions, A

must be zero. Therefore, (3.13) can be recast into
x =9, ¥ =x>—px +q, (3.14a)
where
(=x+r, p=3r"+3%-w, qg=B+(w-37%r—2"° (3.14b)

Carrying out the analysis in the phase plane (x,9) (for details, see appendix), we find °
two families of periodic solutions (corresponding to close orbits in the (x,?)-plane) for
(3.9), which are given as follows.

The first family of periodic solutions to (3.9) is given by

(=r — H[m(3-2n)—n(2—-n)]|4n(m —n)]™*

+ H(l/n-1) [1 - nsn2(q),m)]_1 , (3.15a)

with
® = K sechyp + o = Ksecly (cos 00X + sinbY — VT) + @, (3.15D)
K = H\/(1 - n)[8n(m —n)]}, (3.15¢)

V = cosb {3r2 + 3tan? 6y — H2[m*(3 — 4n + 4n?)

= 2mn(2 — n + 2n?) + n*(4 — 4n + 3n?)][4n(m - n)]_2} ,  (3.15d)
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where H is the wave height, m and n (0 < n < m < 1) are two parameters, 6, is the
angle of incidence, K is the X-component wavenumber, V is the phase speed and ®, is

a phase constant. The wavelength of the periodic wave (3.15), A, is given by

A =2K(m)cosbp/ K, (3.16)
where
/2 dt
K(m) = [ :
{m) o [l —msin®t]1/2 (3:17)

is the complete elliptic integral of the first kind.
Assuming that the mean interface is located at z = 0, i.e. the net area covered by

the interface within a wavelength is zero:

/OAC (QK/(\m)&) 4 — QK/(\m) /021<(m) ()46 =, s,

we obtain
(1 = 1/n)I(n,m)/K(m) = r/H — [m(3 — 2n) — n(2 — n)] [4n(m —n)]"*, (3.19)

where

/2 t
(n,m) :/ d

o [l —nsin?#][1 — msin®¢]/2

(3.20)

is the complete elliptic integral of the third kind.
Upon using (3.16) and (3.19), (3.152) can be rewritten as

(= H(1—1/n) {mn,m)/K(m) ~[ionsn? (B34 %)]_1} RNCE )

Given H (wave height), A (wavelength) and 6, (angle of incidence), we first express n in

terms of m through (3.15¢) and (3.16):

n=ng= % [(m +T) £/(m+T)2 - 41“] : (3.22a)

where

1
T 32K2%(m)

I'(m) (HA/cos 6)° . (3.22b)
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Note that since n (0 < n < 1) is a real parameter, the range of m is a subset of (0,1) such
that the determinant [(m + I')* — 4T > 0. Substituting (3.22) into (3.19), we obtain a
transcendental equation for m. It can be showed that for r < 0(r > 0), no solution can
be found when n = ni(n = n_) is substituted into (3.19), whereas a unique solution
is obtained when n = n_(n = n4) is substituted. Indeed, for the same value of m, if
(m,n_) corresponds to (¢,r), then (m,ny) should correspond to (—(, —r) with a phase

shift K(m). The reason is that (3.9) is invariant under transformation ((,r) — (—=(, —r).

1.0

0.0 0.5 1.5 2.0

1.0

@I\
Figure 1. Profiles of the periodic wave (3.21) for different values of P; with P, = —0.5:
(----), A =5.0 (m=0.7229,n = 0.2869); (—-—), P, = 10.0 (m = 0.9549, n = 0.3856);
(----), L =15.0 (m = 0.9943,n = 0.4507). For comparison, the sinusoidal wave profile
(3.24) is also plotted in this figure (——).

From (3.19) and (3.22), one can see that the normalized wave profile corresponding
to (3.21), i.e. (/H as a function of ¢/A, actually only depends on two combined
parameters P, = HA/cosfy and P, = r/H. The shapes of the periodic wave given by
(3.21) for different values of P; with fixed P, are shown in figure 1, whereas the shapes

of the periodic wave for different values of P, with the same P, are plotted in figure 2.
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For every case, the corresponding values of m and n are given in the parentheses. For
fixed P, < 0, both m and n increase as P, increases (see the caption of figure 1). On

the other hand, for the same P, m increases but n decreases as |P;| increases (see the
caption of figure 2). When r < 0 (i.e. P, < 0), as P; or |P,| increases, the wave crest

becomes flatter, whereas the trough becomes steeper. When r > 0, the situation is just
opposite because the crest becomes the trough and vice versa under transformation

(¢,r) = (=¢,—r). Two limiting cases: m — 1 and m — 0 are discussed as follows.

1.0

¢/H

0.0 0.5 1.5 2.0

1.0
dIA
Figure 2. Profiles of the periodic wave (3.21) for different values of P, with P, = 5.0: (—
—), P, = —0.1 (m = 0.6799,n = 0.3987); (- - - -), P, = —0.5 (m = 0.7229,n = 0.2869);
(—-=), P, = —2.5 (m = 0.9523,n = 0.0960); (----), P = —5.0 (m = 0.9942, n = 0.0499).

(a) m — 1. In this limit, the wavelength A becomes inﬁr;ite long according to (3.16)
(the close orbit in the (x,?)-plane becomes a homoclinic orbit, as shown in figure A1),
but 2K(m)/A — Hseco/+/8n. It can be readily shown that sn(®,m) — tanh &,
II(n,m)/K(m) — 1/(1 — n), and from (3.19) H — —4nr/(1 + n). In this situation, the
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periodic-wave solution (3.21) reduces to the solitary-wave solution:

4rn sech?® _ _ -

= ®=KX+ KtanbY — QT + @ 3.2
¢ <1+n>1~ntanh2@7 A Atanto @, . (3:232)
with
K= I—[_:,—(Qn)lﬂ, Q = 4K® 4+ 3K tan® ;. (3.23b)
n

Note that the height of the solitary wave given by (3.23) increases as n increases and
has an upper bound |2r/|.
(b) m — 0. In this limit, n, H — 0; the periodic wave becomes infinitesimal. As

m,n — 0, sn(®,m) — sin®, K(m) — 7/2, and II(n,m)/K(m) = (1 +n/2), (3.21)

reduces to
H 2m - _
(= — cos X(cos 0o X +sinbyY — VT) + (DO] , (3.24a)
where
V = cos 0o(3 tan® 0y — 472 cos? fp/A?). (3.24Db)

We remark that (3.24) is the sinusoidal-wave solution for the linearized equation of (3.9),,

The second family of periodic solutions to (3.9) is given by

( =r+ 3Hsn(®,m), (3.252)
with
® = K seclo + Bo = K sec o (cos X + sin 6o — VT) + &g, (3.25b)
K= 1_&1/(2\/5 m), (3.25¢)
V = cos b {31"2 +3tan® 6o — LH*(1/m*+ 1)} ) (3.25d)

where H is the wave height, m (0 < m < 1) is the modulus of the snoidal wave, K is
the X-component wavenumber, V is the phase speed, 6, is the angle of incidence and

®, is a phase constant. The wavelength of the snoidal wave A is given by

A = 4K(m) cos 6o/ K = 8V/2mK(m) cos 8o/ H. (3.26)
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Upon using (3.26), (3.25a) can be rewritten as

4K
A

[@V)
[\"]
~J
 ———

(:r+%Hsn( <Z_5+‘I’o)- -G

Given H, A and 6,, or more compactly, given P, = HA/ cos g, m can be uniquely
determined from (3.26). Note that the mean interface corresponding to the snoidal wave
(3.27) is located at z = r. Unlike the wave profiles of the first family of periodic waves
(see figures 1 and 2), the profiles of the second family of periodic waves are symmetric
about its mean interface location. Figure 3 shows the profiles of the snoidal wave (3.27)
for different values of P,. The corresponding values of m are given in the parentheses.
One can see that as P; increases, m increases, and the wave crest and trough both
become flatter and broader. Two limiting cases corresponding to m — 1 and m — 0 are

discussed below.

1.0

0.0 0.5 1.0 1.5 2.0

Figure 3. Profiles of the periodic wave (3.27) for different values of P; with &, = —K(m):
(----), P, = 10.0 (m = 0.4808); (- - —), P, = 25.0 (m = 0.8827); (----), P = 50.0

(m = 0.9977). For comparison, the sinusoidal wave profile (3.29) is also plotted in this

).

figure (
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(a) m — 1. In this limit, the wavelength of the snoidal wave becomes infinite long
(the close orbit in the (x,¥)-plane becomes a heteroclinic orbit (see figure A2)), but
4K(m)/A — HsecBy/+/8. By further imposing ( — 0 as & — +oo, we obtain the

isolated shock-like solution to (3.9), which is
¢ = r[l — tanh @], ® =KX + K tan8,Y — QT + @, (3.28a)

where

K =|r|/vV2, Q=4K°+ 3K tan’6,. (3.28b)

Since (3.9) is invariant under transformation ¢ — 2r — ¢, from (3.28), we have
¢ = r[l +tanh ®], which is the isolation shock-like solution satisfying { — 0 as & — —o0.
For definiteness, we assume that { — 0 as ® — +oo.

(b) m — 0. In this limit, H — 0. The snoidal wave (3.27) becomes an infinitesimal

sinusoidal wave:

(=r+ %I-sin [%\E(cos 00X +sin Y — VT) + @0] , (3.29a)
with
V = cos 8, (37'2 + 3tan? 6y — 472 cos® 90/A2> . (3.29Db)

It is easy to show that (3.29) indeed is the sinusoidal-wave solution for the equation
obtained by linearized (3.9) about ¢ =r.

Note that the dependent variable transformation (3.8a) does not include any
of the new or old independent variables. Thus, on substitution of (3.8) into (3.21),
(3.27) and (3.23), (3.28), we obtain theAcorresponding periodic-wave solutions,
solitary-wave solutions and a shock-like solution (satisfying 1o — 0 as £ — +00), to the

variable-coefficient equation (3.7). The phase ® of these waves can be expressed as

® = V6K {f +Y {(6D1)1/2 tan 6y/C —/OX Fl(q)dq} —/OX [QDl/(C'K)

+ Fo(q) — (6D;)"/ tan 6, /0 " Fu(s)ds + % ( /0 ’ Fl(s)ds> 2] dq} +®. (3.30)
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In the moving coordinates (¢, X,Y), at different X, the lines of constant phase remain

straight parallel lines in the (§,Y)-plane. However, their direction will change due to
the contribution from Fj, whose relation with the topography is described by (3.6).
° The contribution from Fj only causes the lines of constant phase to translate and hence
changes the speed of the wave in the moving coordinates.
To save the space, only the explicit expressions for the family of the solitary-wave
solutions and the isolated shock-like solution are given here. The expression for the
[
family of solitary-wave solutions to (3.7) is
D_sn sech?®
— 3.31
o [OC/J.D_3(1+TL):| 1 —ntanh?®’ ( 2)
¢ where @ is given by (3.30) with
C|D_s| [ 2n \* s o
(= N =4K K tan® 6. .311
K 0+ \DiD , 4K~ + 3K tan® 8, (3.31Db)
o The expression for the shock-like solution to (3.7) is
_ D_3[1 —tanh @] y
¢ where ® again is given by (3.30) with
D_
U 730 0 =4K° + 3K tan® §,. (3.32b)
4/1(2D1D._3)
L Note that when D_; = 0(r = 0), i.e. exactly at the critical depth level, we have only
trivial solution 1o = 0 which vanishes at infinity.
If the sidewalls are given by
o X 1/2 7
Ya(X) = /0 [(6131) tan 0y — C | Fl(s)ds] dg + Yz(0), (3.33a)
X g
nx) = [ [(6D1)1/2 tando — C [ Fl(s)ds] dg + Y2(0), (3.33b)
0 0
o any travelling-wave solution { = ((X + tan Y — wT) will satisfy boundary conditions

(3.11). Thus, for those sidewalls given by (3.33) (note that they are parallel), the
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periodic-wave solutions we have found, including the family of solitary-wave solutions
(3.31) and the isolated shock-like solution (3.32), automatically satisfy boundary
conditions (2.12) with v = 0. o

In summary, in the absence of rotation, we have obtained analytic expressions to
describe transformations of two different types of interfacial periodic waves (asymmetric
and symmetric about the mean interface location) propagating near the critical depth
level and over a weak topography with linear transverse variation. When the wavelength
becomes infinite, these expressions reduce to (3.31) and (3.32), which describe the
propagations of interfacial concave (D_; < 0) or convex (D_, > 0) solitary waves and
a non-dissipative jump (D_; < 0) or bore (D_5 > 0) in the same setting, respectively.
The presence of the sidewalls usually will interfere with the propagations of these
finite-amplitude waves, but for those parallel sidewalls given by (3.33), the presence of
the sidewalls will not affect the wave propagations. The most striking feature is that
these three-dimensional waves can remain intact in certain type of curved channels with
varying topography; the only changes are the propagation directions and the phase
speeds.

Finally, for an incident Kelvin solitary wave given by

Doy ] sech” {V/BK[¢ + (6D,)"/* tan 6,Y/C] } exp(—Y/C)
apD_z(1 +n) 1 — ntanh® {VBKI¢ + (6D;)"/* tan 65Y/C]}

w(0.Y) = | ,

(3.34)
propagating in a varying channel, assuming that the solution evolved from this initial
condition is locally confined ((3.34) satisfies (2.18) at X = 0), we obtain explicit
expressions for the first-order and second-order invariants Z (8 = 0) and J (see (2.16)
and (2.17)), which are

D 1/2 1/2
——) ln " (8=0), (3.352)

) 2
7= 51gn(D_2)g(W/C)l/2 (3D_3 1 — pl/2

7 = D, \'* | D_o] _n1/2 +£1n1+n1/2
B ?uD_3\ 14+n 2 7 1-nl/?

3D_3
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x% lexp (=28Yr/C) —exp (—28Y1/C)], (3.35D)

where all the functions are evaluated at X=0. These two analytic expressions are useful

to test the accuracy of numerical schemes for (2.11) and (2.12).

4. Kelvin solitary wave propagation in a rotating uniform
channel

Using the rotation-modified KP (rmKP) equation, Katsis & Akylas (1987) and
Grimshaw & Tang (1990) investigated the rotation effect on the evolution of an initially
straight-crested Kelvin solitary wave in a uniform channel. They confirmed that the
rotation gives rise to a solitary-like wave whose wavefront is curved back, which is
in qualitative agreement with the experiments of Maxworthy (1983) and Renouard,
Chabert d’Hiéres & Zhang (1987). Katsis & Akylas’ numerical results also showed
that the wave amplitude decays slowly as the disturbance propagates downstream.
This indicates that the solitary-like wave is not a wave of permanent form and the -/
observed attenuation in experiments is only partly caused by the viscous damping. By
studying a coupled set of evolution equations, which are asymptotically equivalent to the
rmKP equation, Melville et al. (1989) explained that the backward curvature and the
attenuation along the channel are caused by resonant interactions between the nonlinear
Kelvin wave and linear Poincaré waves, which are generated by resonant forcing of the
Kelvin wave. Similar conclusion was also reached by Grimshaw & Tang (1990) using a
small-time asymptotic analysis of the rmKP equation.

In this section, we study Kelvin solitary wave propagation near the critical depth
level in a rotating uniform channel to examine the effect of the cubic nonlinearity on
the wave propagation. Following Grimshaw & Tang (1990), we first carry out the
small-time asymptotic analysis for (2.11) with constant coefficients and then numerically

solve the equation. We shall show that depending on the relative importance of the
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cubic nonlinearity to quadratic nonlinearity, an initially straight-crested Kelvin solitary
wave can curve backwards or forwards, or remain almost straight-crested as the wave
propagates down the channel.

To compare with the results obtained by Grimshaw & Tang (1990), we introduce

the following transformation:

2

o = €C2D_2

(D:/3)%u, X =2C3/Dy)"*r, €= (D:/3)"/%, Y =C\ (4.1)

which transforms (2.11) and (2.12) (with Yz = 0,Y;, = W) for waves propagating in a

rotating uniform channel into

8%u 0%*u? 0% 0w O%*u

— B2, —
9700 2o o tam tam Pu=0 (42)
ou
a_/\+5u_o, on A=0,! (4.3)
where
8u*D_3 1/2

Note that the rmKP equation studied by Grimshaw & Tang (1990) did not include the’
cubic nonlinearity. Equation (4.2) recovers their equation if P = 0.

It is easy to show that the following transverse modal functions, satisfying the
boundary conditions (4.3), form a complete and orthogonal set

$o(A) = exp(—BA), (4.5a)

¢n(A) = cos nl_ﬂ')\ — %sin %Z)\, n=1,2,.... (4.5b)

The mode n = 0 is the Kelvin wave mode and the remaining modes (n > 1) are Poincaré

wave modes. We now expand the solution of (4.2) in the form
u(f,7,) = Ao(8,7)exp (—BA) + B(6, 7, A), (4.6a)
where

B(0,7,)) = i An(0,7)n(N) (4.6D)

n=1
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represents all the Poincaré modes. Suppose that initially only the Kelvin wave
component exists, i.e. B = 0 at 7 = 0. So B can be expected to remain small in
sufficiently small ‘time’ 7. On substitution of (4.6) into (4.2) and (4.3), and with the
use of orthogonality, for small 7, the governing equations for Kelvin wave component

and Poincaré wave component can be approximated by

3 3
Po s o228 pulls 20, 20 (0 B0

or a; 09 a, 06 863 " 4,00
- :’;f 830 (AO / Be -WdA) O(B?), (4.7)
and
gjge + %496 + BBZB — B°B+6e7 8392 {Ao (B —~ a% Ol Be-2ﬁAdA”
~ 3P ;;2 [A2 (B - ;-2- 'Be —de)]
= —3e " <e-f” a2> aa;; + Pe~P ( —28x %) % + O(B?),(4.8a)
gf +6B=0, on)=0,l, (4.8bJ
respectively, where
¢ = /0 LA = % (1—eme). (4.9)

From (4.8a), it is clear that an initially straight-crested Kelvin solitary wave cannot
maintain its original shape, because it will generate the Poincaré waves through
resonant forcing (Melville et al. 1989), which will further interact with the Kelvin wave
component.

To the leading order, (4.7) for the Kelvin wave component becomes

6140 as 8A ag 8/13 63A0
B +3£—8—§———PG2 50 + = 50 ~ 0, (4.10)
which has a solitary-wave solution:
h’®
Ao(6,7) ~ S(0,7) = ——n O = k(0 — 4k?7), (4.11a)

1 —Ttanh?®’
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where

aPay 1 /a
T=————, k==,/—(4az3 — aPay), 4.11b
4a3 — aPay 2V 2a, (405 — aPay) ( )

and a (0 < a < 2a3/Pa,) is the amplitude of the solitary wave. Since we have assumed
that B = 0 at 7 = 0, it follows from (4.8) that for small enough 7, the Poincaré waves

generated by the Kelvin solitary wave can be expressed as

95? a 353 a
= e P33} _ pZ2 (280 4 2y 12
B e [3 50 (e a2> P 50 (e az)} + O(7%) (4.12)

Note that (4.12) satisfies the boundary conditions (4.8b) (up to O(7?)), because

= BB 2 56,00 | [ 60ePar [ [ g2 nax (4.133)
as — o o " 1
-36x _ 94 __prn _ = : —36) b
e e —T;én(x\) [ /0 Gn( Ve N / /0 gzsn()\)d/\}. (4.13D)
Substituting (4.12) into (4.7), we find that
04y | 303045 pas045 PAy 7 210125
o0 T %00 Tnae Tar o |Hum sl |
525 9 025°

— 9P(as — azas/az)

St aiorZS] 0w i

06? 06?

The solution to (4.14), correcting up to O(73), is given by

2 9258 9%5
Ag=S + % {12((14 — ag/az)w - 9P(as - 0304/‘12)70“2"
9 0%5°
+ 5(‘16 —a%/ay)P? 502 ] + O(7?). (4.15)

Substituting (4.15) and (4.12) into (4.6a); we find that the solution to (4.2) and (4.3),

correcting up to O(7?), can be written as

asech?® {k[6 — 4kt — V;1(0, \)7]}

= —BA 2
“TIC T tanh® {k[6 — 4k2T — V; (9, ,\)T]}e + O(%), (4.16)
where
Vi(6, ) = 65(6,0) (e-m _ %:1> _35%(6,0)P (e-m ~ 34_) | @17
2 as




which can be interpreted as a correction to the incident wave speed V = 4k? due to
the Poincaré waves (4.12). Note that when P = 0, the above results agree with the
corresponding results obtained by Grimshaw & Tang (1990).

There are two terms in (4.17). The first term comes from the quadratic nonlinearity,
whereas the second term comes from the cubic nonlinearity. At the wall A = 0, the first
term is positive, whereas the second term is negative (note that P > 0). As A increases,
the first term decreases and becomes negative at the other wall A = [ (assuming 8 > 0),
whereas the second term behaves just opposite. Therefore, the cubic nonlinearity tends
to cause the wavefront, which is initially straight-crested in the transverse direction,
to curve forwards relative to the wall where it initially has the largest amplitude (here
A =0 for f > 0), whereas the quadratic nonlinearity tends to cause the wavefront
to curve backwards. For waves propagating near the critical depth level, both the
quadratic and cubic nonlinearities are equally important. The combined effect on the
curvature of the wavefront depends on the ratio of the first term to the second term in
(4.17). From (4.2) and (4.10), one can see that in the (7,6, A) coordinates, for fixed
incident wave amplitude a, rotation rate § and channel width [, the relative importance
of the cubic nonlinearity to the quadratic nonlinearity can be simply measured by the
parameter P. Figure 4 shows the variation of the relative speed correction along the
crest line (6 = 0), V1(0,A)/V, across a channel for a Kelvin solitary wave given by
(4.11) for different values of P with a = 2.0, = 1.0 and [ = 1.25. The corresponding
mean-squared relative speed correction =1 f{[V4(0,A)/V]2d) achieves its minimum value
at P, = 0.791 and increases as | P — P,| increases. Note that for the given a and 81, there
is a upper limit for P, which is 2a3/(aas) = 1.31. As P gets close to this upper limit, the
solitary wave (4.11) becomes broader and flatter. From figure 4 and the behavior of the
mean-squared relative speed correction along the crest line as P varies, one can expect
that for small value of P, the quadratic nonlinearity dominates the cubic nonlinearity

and the Poincaré waves generated by the Kelvin solitary wave will cause the wavefront
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to curve backwards, whereas for large value of P, the cubic nonlinearity dominates the
quadratic nonlinearity and the wavefront will curve forwards. For some intermediate
value of P (near P,), the contributions from the quadratic and cubic nonlinearity almost
balance each other and the Poincaré waves generated by the Kelvin solitary wave are
very weak. As a result, the speed correction due to the Poincaré waves is not significant,
as indicated by the dotted line in figure 4. In this situation, the wavefront almost

remains straight-crested across the channel.

2
1 —————
> e T
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..... Bl
o 0= = N
\_: . // Tt~ T
> // \\\
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, ]
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0.0 0.25 0.5 0.75 1.0 1.25

A

Figure 4. A plot of Vi(0,))/V as a function of A for different values of P: (— - —)
P=04;(----),P=08;and (---), P=1.1.

9

The above analysis is valid only for small ‘time’ 7. To see if the prediction is also
applied to finite 7, we numerically solve (4_.2) with (4.3). The numerical scheme developed
by Chen & Liu (1996b) for the uKP equation is modified to solve (4.2) with (4.3). The
incident Kelvin solitary wave is given by (4.11) with ¢ = 2.0, = 1.0 and [ = 1.25
(unless otherwise noted), which satisfies the constraint [°3 udf = F(7)exp(—F) at
7 = 0. In the numerical computations, Af = 0.2, A = 0.05, and A7 = 0.25 x 1072 has

been used. In each of the numerical examples given below, the relative errors between
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the numerically evaluated second-order integral invariant and its exact value at different
7 are never in excess of 0.5%.

For small time 7, we find that the numerical results agree very well with the
predictions given by (4.16) and (4.17). Figure 5 shows the contour plots of u(7,8, ) at
finite time 7 = 1.5 for different values of P: 0.4, 0.8 and 1.1. The numerical results show
that at finite time, the curvature of the wavefronts is consistent with the predictions
based on the small-time analysis. For small value of P (see figure 5a), the quadratic
nonlinearity is dominant; the wave pattern looks very similar to that described by the
rmKP equation (i.e. P = 0). The curved-back front moves as a whole and is trailed
by a train of small-amplitude Poincaré waves, which is dominated by its first mode
(see figure 5a). The maximum wave amplitude attenuates gradually along the sidewall
(A = 0) as the disturbance propagates downstream (see dashed-dotted line in figure 6).
As the rotation rate increases, the extent of the wavefront curvature and the amplitude
of the trailing Poincaré waves both increase. For large value of P (see figure 5¢), the
cubic nonlinearity is dominant; the wavefront curves forwards, accompanied by a smaller’,
Poincaré wave train (compared with those associated with small P value; cf. figure 5a.
with 5¢). The maximum wave amplitude along the channel almost remains constant (see
dashed line in figure 6). For P = 0.8, the wavefront is almost straight-crested across the
channel, with very small trailing Poincaré waves (see figure 5b). Note that the leading
wave is nearly symmetric about the crest line. The maximum wave amplitude along the

channel decreases at the beginning, but pretty soon reaches a constant value as shown

in figure 6 (dotted line).
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Figure 5. Contour plots of (7,8, ) at 7 = 1.5 for different P values: (a) P = 0.4; (b)
P=08;(c) P=1.1.
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Figure 6. The variation of the maximum wave amplitude at the right-hand sidewall
(A = 0) along the channel for different P values: (—-—), P = 0.4; (----), P = 0.8; (- -
-), P=1.1
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Figure 7. The decay of the amplitude of the leading wave at 7 = 1.5 across the channel

along the wavecrest for different P values: (—-—), P = 0.4; (----), P = 0.8; (- - -),

P = 1.1. For comparison, the liner Kelvin wave decay ( ) is also shown.

Figure 7 shows the decay of the amplitude of the leading wave at 7 = 1.5 across the

channel along the wavecrest for different P values. For comparison, the linear transverse
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decay exp(—f2) is also plotted in the figure (solid line). In each case, the broken line
is very close to a straight line. This indicates that the variation of the wave amplitude
along the wavecrest still remains exponential for a Kelvin solitary wave propagating
near the critical depth level. As P increases, i.e. the cubic nonlinearity enhances, the
decay rate increases and approaches to the linear decay rate. Note that for P = 0.8
case, since the leading wave is almost straight-crested and its maximum wave amplitude
at 7 = 1.5 is smaller than that of the incident wave (see figure 6), the decay along the
wavecrest should be slower than the linear decay owing to the conservation of energy.

This is consistent with the results shown in figure 7 (cf. dotted line with solid line).
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Figure 8. Contour plot of u(7,8,A) at 7 = 1.5 for P = 1.1 in a wider channel A = 2.5
with 8 = 1.0 and a = 2.0.

Because Kelvin solitary waves exponentially decay across the channel, even if the

cubic nonlinearity is dominant near the wall where it has the largest wave amplitude
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(here A = 0 for B > 0), the quadratic nonlinearity will dominate the cubic nonlinearity
near the other wall if the channel is wide enough and/or the rotation is sufficiently fast.
In this situation, the wavefront across the channel will first curve forwards and then

curve backwards as clearly shown in figure 8.

5. Concluding remarks

Assuming that the effects of nonlinearity, dispersion, transverse modulation,
rotation and variations of topography and sidewalls are weak but equally important, we
have derived the evolution equation for three-dimensional interfacial wave propagation
near the critical depth level, where the cubic nonlinearity is comparable to or dominates
the quadratic nonlinearity in the parametric regime O(¢) = O(u). The resulting
equation cannot pass the Painlevé PDE test due to the appearance of the cubic
nonlinear term. Therefore, the search for analytical solutions becomes mathematically
challenging. Under the same conditions as those for the uKP equation to be completely
integrable (i.e. no rotation exists, the variation of topography is weak and behaves like &
linear function in the transverse direction), we have found two families of periodic-wave
solutions, expressed in terms of the snoidal function, to the variable-coefficient evolution
equation. A family of solitary-wave solutions and an isolated shock-like solution, which
may be regarded as a non-dissipative bore or jump, have also been obtained as the
limiting cases of the periodic-wave solutions. The analytical solutions show that these
finite-amplitude waves can remain intact in certain type of curved channels with varying
topography. The integral invariants associated with the evolution equation for interfacial
waves propagating in a varying channel have also been found and they turn out to be
the same as those of the uKP equation.

Through the small-time asymptotic analysis and numerical study, we have found
that depending on the relative importance of the cubic nonlinearity to quadratic

nonlinearity, a straight-crested Kelvin solitary wave propagating in a rotating uniform
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® channel will curve backwards or forwards, trailed by a train of small Poincaré waves.
When these two nonlinearities are almost in balance, the Kelvin wave remains almost
straight-crested, with very small trailing Poincaré waves. The decay of the wave

P amplitude along the wavecrest across the channel remains almost exponential with the
decay rate increasing as the cubic nonlinearity enhances. The maximum wave amplitude
along the channel at the same location also increases as the cubic nonlinearity increases.

The effect of topographic variation on Kelvin solitary wave propagation near the

®
critical depth level is under investigation and the results will be reported in the future.
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° Appendix
In this appendix, we shall find all the bounded solutions to the set of equations
dx dd 3 '
= =9, — =y = Al
3% g =X ~xte (A1)
e
which is a conservative system and has the following first integral:
3O = 30 = 2x° + 49x) = 5(X)* - f(x) = C, (A2)
o .
where ' = d/d¢, f(x) = 3(x* — 2px*® + 49x) and C is the constant of integration.
‘ Since (Al) is invariant under transformation (x,9,q) — (—x, —9, —¢q), without loss of
‘ ‘generality, we can assume g > 0.
K . e .
! For the conservative system (Al), besides the equilibrium solutions, any other
|
bounded solutions, if exist, correspond to close orbits in the phase plane (y,d). The
existence of close orbits depends on the values of the parameters p and ¢. Carrying
e

out analysis in the phase plane, we find out only when p > 0 and 0 < ¢ < %p(p/?))lﬁ,

there exist close orbits in the phase plane. Under these conditions, the cubic polynomial

4
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F'(x) = x* — px + g = 0 has three distinct real roots, denoted as «, 8 and v with

7 <0< 8 < a, and system (Al) has three fixed points (,0), (5,0) and (,0), where
(e,0) and (,0) are saddle points and (3, 0) is a center. The explicit expressions for the
periodic solutions corresponding to the close orbits depend on whether ¢ is equal to zero

or not.

Figure Al: The phase portrait of system (Al) when p > 0and 0 < g < %p(p/3)1/2.

(a) When 0 < ¢ < 2p(p/ 3)/?, the phase portrait is shown in figure Al. If the
constant of integration C in (A2) satisfies —f(a) = C, > C > Cp = —f(B), there
exists a close orbit circling around the center (3,0). In this situation, f(x) + C = 0 has
four distinct real roots: a,b,c and d, which satisfy d < vy < ¢ < f < b < a0 < a (see
figure Al). To obtain the periodic solution corresponding to close orbit C, we integrate

the first integral (A2) along the close orbit and obtain

/X du
c [(a - u)(b — u)(u — C)(U _ d)]1/2

where ¢ is a constant. This equation can be rewritten as:

1
=+ 50— d) (esxsb), (A3

F(8,m) = £—=(8 = o) (Ada)

Q'

[(a —<)(b—d)]'?
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where )
: (b—d)(x--C)]12 (b—¢)(a - d)
6 =arcsin | ——+| , m= ———"——= A4b
== (@=ab-3) (D)
and F, the elliptic integral of the first kind, is defined as
§ du
F(é,m) = . Adc
/0 (1 —msinzu)ll2 (Ade)
Thus, according to the definitions of elliptic functions, we have
(b-dx—0) o
= sn*|K(¢ — ¢o), m], Aba
where
K = [(a —c)(b—d)/3]*~. (A5b)
Hence, the periodic solution corresponding to close orbit C' can be written as
-1
x=d+(c~d) {1 - nen’[K(¢—do),m]} ", (A6a)
where
n=(b-c)/(b—d). (A6b)

Note that 0 < n < m < 1 according to (A4b) and (A6b). From the relation between the

coefficients and the roots of the following polynomial:

x* = 2px* +4qx +4C = (a — x)(b— x)(x — &)(x — d), (AT)
we have
a+b+d+c=0, (A8a)
and
ab+ (a+b)(c+d)+cd = —2p. (A8b)

Using (A8a) and introducing the wave weight H measured vertically from trough to

crest,

H=b—c (A9)
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[ we can express a,b,c and d in terms of m,n and H. These expressions are given here:
a=H[m(l—2n)+n(2—n)] [d4n(m —n)] ", . (Al0a)
® b= H[m(l+2n)—n(2+n)][dn(m —n)] ", (A10b)
¢ = H[m(l = 2n) —n(2 - 3n)] [4n(m — n)] ", (A10c)
d = H[-m(3—2n) +n(2 —n)] [dn(m —n)]™". (A10d)
L
On substitution of (A10) into (A5b), the expression for K can be rewritten as
K = Hy/(1 = n)[8n(m —n)]-". (A1)
®
The corresponding periodic solution to (3.9), { = r + x (see (3.14b)), can be obtained
by substituting (A10) into (A6a):
® ( = r—H[m(3-2n)—n(2—n)]dn(m—n)]"!
+ H(/n—1){1-ns?K(¢—¢o)m]} , ¢=X+I¥-wl. (AL2)
Substituting (A10) and the expression for p (see (3.14b)) into (A8b), we obtain
e
w=3r2 + 31— H’[m*(3 — 4n + 4n?)
— 2mn(2 — n + 2n%) + n*(4 — 4n + 3n?)][4n(m — n)] 2, (A13)
®
which indeed is the dispersion relation for the periodic wave given by (A12).
(b) When ¢ = 0, the phase portrait is symmetric about the J-axis (see figure A2);
B =0and a = —y = p'/2. When 0 < C < C, = —f(p'/?), there exists a close orbit
L

surrounding the origin. In this situation, f(x)+ C = 0 has four distinct real roots, i.e.

+a,+b with b < a.
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Figure A2: Phase portrait of system (A1) when p > 0 and ¢ = 0.

Since the orbit is symmetric about the x- and ¥-axis, the periodic solution
corresponding to close orbit C can be obtained by integrating the first integral (A2)

along the orbit in the first quadrant:

x du
/0 [(a® — u?)(b? — u?)]

=g O<xsB. (Al

The integral on the left-hand side again can be recast in terms of the elliptic integral of

the first kind F':
F(arcsin(x/b),b/a) = \/%(qs — o), (A15)

which can be rewritten as:
x=bn | (6= do)bfa) . (A16)

For convenience, the constants a and b are expressed in terms of the wave height H and

the modulus m (0 < m < 1) of the snoidal function:

b= H/2, a="b/m= H/(2m). (A1T)
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The corresponding snoidal-wave solution to (3.9) becomes
(=r+x=r+iHn [H/(2V2Zm)(6—o)]; ¢=X+IV—wl.  (Al8)
From the relation between the coefficients and the roots of the following polynomial:
X' = 2px* +4C = (¥ = X*)(0* ~ X7, (A19)
we have the following dispersion relation for the snoidal wave (A18):

w=3r2+31* — (a® +b°)/2 = 3r* + 31* — LH?(1/m? + 1). (A20)
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